Game Changing Development

Validation of Fiber Optic Temperature Sensor Arrays for Thermal Protection System Materials

Completed Technology Project (2015 - 2018)

Project Introduction

Advanced fiber optic temperature sensing technology into thermal protection system development and flight instrumentation to improve our understanding of how heatshield materials perform and thereby our ability to do human and robotic spaceflight.

Anticipated Benefits

This project hopes to improve our understanding of how heatshield materials perform and thereby our ability to do human and robotic spaceflight.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Intelligent Fiber Optic Systems Corporation	Lead Organization	Industry	Santa Clara, California

Primary U.S. Work Locations

California

Validation of Fiber Optic Temperature Sensor Arrays for Thermal Protection System Materials

Table of Contents

Project Introduction	1
Anticipated Benefits	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Target Destination	3

Game Changing Development

Validation of Fiber Optic Temperature Sensor Arrays for Thermal Protection System Materials

Completed Technology Project (2015 - 2018)

Project Transitions

November 2015: Project Start

January 2018: Closed out

Closeout Summary: Completed fabrication of sensorized arc jet test models (b oth PICA and BPA) and arc jet tested them (18 total models). Determined that F iber Optic Bragg (FBG) sensors performed well up to 1000-1200C, fiber degrada tion occurs at higher temperatures. Going to Sapphire fibers would increase tem perature capability. Themocouples provide accurate data up to 1500C. Advnaced TRL for FBG sensors to 6.

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Intelligent Fiber Optic Systems Corporation

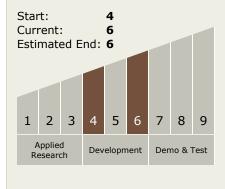
Responsible Program:

Game Changing Development

Project Management

Program Director:

Mary J Werkheiser


Program Manager:

Gary F Meyering

Principal Investigator:

Jay D Feldman

Technology Maturity (TRL)

Game Changing Development

Validation of Fiber Optic Temperature Sensor Arrays for Thermal Protection System Materials

Completed Technology Project (2015 - 2018)

Target Destination Foundational Knowledge		
Foundational Knowledge		

